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Abstract- The management of smart grids requires advanced and complex measuring systems because of the continuous 

development of electricity production, transmission, and distribution systems. These measurement systems, because of their 

complexity, are only based on analog-to-digital conversion. To characterise the quality of such measurements, it is necessary to 

evaluate their measurement uncertainty. With this aim, this paper presents an approach based on the Monte Carlo method. By 

using a specially designed simulator and inputting the characteristics of the employed transducers and analog-to-digital 

converters, the method allows not only estimating uncertainties but also getting the probability density functions associated with 

measurements. The proposed method can easily estimate the impact of different sources of error on the measurement uncertainty, 

allowing for the proper design of the measurement system and the proper choice of transducers and analog-to-digital converters. 
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1. Introduction 

The urgent need to transition to clean energy has led to an 

increased use of renewable sources, such as solar and wind. 

However, due to the variability of these sources, managing 

production, transmission, distribution, and use of electricity 

has become more challenging [1-5].  

To reduce the demand for new and high-priced 

infrastructure and maximise power grid efficiency, reliability, 

and stability, the use of digital technologies, smart sensors, 

software, and complex measurement systems is becoming 

more common, creating a "Smart Grid". 

In this context, measurements are playing an increasingly 

important role [6-20]. It is essential to monitor continuously 

not only the usual quantities, such as voltage, current, active 

power, and reactive power, but also all the parameters related 

to power quality. 

Because of the complexity of these measurements, they 

are performed exclusively by employing the analog-to-digital 

conversion (A/D) and the subsequent digital processing of the 

acquired data. Measuring instruments made with a data 

acquisition card (DAQ) connected to a personal computer 

offer a more economical and flexible alternative compared to 

standalone instruments that are usually dedicated to a defined 

measuring purpose. However, in both cases, it is necessary to 

use transducers with adequate bandwidth characteristics 

because of the high voltage and current values present in 

power grids.  

As with any measuring process, to assess the quality of 

such measurements, it is necessary to evaluate their 

uncertainty following the rules prescribed in the "Guide to the 

Expression of Uncertainty in Measurement" [21]. For the 

measures covered by this paper, these rules can be summarised 

in the following four steps: 

➢ identifying error sources that occur during signal 

transduction, A/D conversion, and digital processing of 

acquired data. 

➢ estimating the uncertainty associated with each 

identified source. 

➢ obtaining the uncertainty for each acquired sample by 

combining the uncertainties associated with each error source. 

➢ investigating how uncertainties on each sample 

acquired propagate along the digital signal processing and 

affect the measurement result. 

Particularly in the A/D conversion process, the initial step 

is the most challenging one. Manufacturers provide numerous 

parameters to characterise their A/D converters or DAQ [22]. 

Furthermore, these parameters are frequently defined and 

measured in a variety of ways. The presence of various 

standards regarding the characterisation of the A/D converters 

is one of the factors that led to this situation [23-24]. 

Therefore, one of the purposes of this work is to identify a 

minimum set of parameters that can fully characterise the 

measurement chain. 

The second step can be carried out by statistical methods 

(Type A evaluation according to [21]) or by using 

manufacturers' specifications (Type B assessment). The 

second approach does not require any type of testing and is 

thus faster and less expensive. It should be noted that, even 

though thirty years have passed since the first publication of 

[21], many manufacturers still do not disclose uncertainty 

values, but only the maximum permissible error. Therefore, 

subjective assumptions about the probability density functions 
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are necessary to assess the uncertainties associated with every 

single error source. This work will analyse both methods, 

highlighting their respective advantages and disadvantages. 

The proposed methodology for performing the last two 

steps simultaneously is the use of the Monte Carlo method 

[25], which involves creating a software tool that simulates the 

introduction of error sources generated by all the components 

of the measurement system. 

The paper is organized as follows: Chapter II presents the 

proposed methodology for estimating measurement 

uncertainty, describing in detail how the four above steps are 

performed. In Chapter III, the suggested approach is validated 

by experimental testing. Chapter IV describes some 

applications to typical measurements on smart grids and 

explains how the Monte Carlo method can be easily utilized 

to assess the impact of each source of error on the 

measurement result. Some final remarks and conclusions are 

depicted in Chapter V. 

2. Uncertainty Evaluation 

The measurement devices used in smart grids typically 

include voltage probes (such as differential, active, low 

capacitance, and passive types) and current probes (such as 

Hall effect sensors, current clamps, shunts, and Rogowski 

coils). These transducers can be affected by several sources of 

errors, including offset, gain, nonlinearity, hysteresis, spurious 

tones, settling time, and thermal noise. 

The situation is much more complicated for the A/D 

conversion process. At least the following sources must be 

considered [23-24]: settling time, thermal noise, crosstalk, 

timing jitter, quantization, differential nonlinearity, spurious 

tones, offset, gain, and integral nonlinearity. 

Another source to consider would be the non-linearity of 

the frequency response of transducers and A/D converters. 

However, since typical signals in smart grids have a very 

limited frequency band compared to the usual employed 

measurement system dynamic range, these errors can be 

overlooked. 

Considering all the sources of error can be a challenging 

and time-consuming task, especially since manufacturers 

rarely disclose all the relevant parameters. To address this 

issue, the methodology described in [26] can be used to 

analyse the impact of each error source on the acquisition of a 

single sinusoid in the frequency domain. This analysis reveals 

that: 

➢ offset errors appear as a DC component on the 

spectrum. 

➢ gain errors cause a variation in the width of the 

spectral line corresponding to the acquired sine wave. 

➢ the non-linearities generate a harmonic distortion of 

the acquired signal. 

➢ spurious tones (usually caused by electromagnetic 

interference) appear as the corresponding spectral lines. 

➢ thermal noise, hysteresis, crosstalk, settling time, 

timing jitter, quantization, and differential nonlinearity 

generate a broadband noise, which can be approximately 

considered as being uniformly distributed throughout the 

acquired spectrum. 

To investigate how errors propagate during digital 

processing, an additional classification is useful: 

➢ offset errors and spurious tone errors are not 

dependent on the acquired signal and appear with the same 

intensity regardless of the characteristics of the acquired signal 

itself. 

➢ gain and nonlinearity errors depend on the amplitude 

of the acquired signal. 

➢ the broadband noise depends on the shape, 

amplitude, and frequency of the input signal. However, for the 

measurements covered by this work, this noise can be 

considered independent of the input signal with good 

approximation. 

Based on the provided information, it can be concluded 

that the minimum set of parameters required for accurately 

evaluating uncertainties includes offset, gain, total harmonic 

distortion (THD), total spurious distortion (TSD), and signal-

to-noise ratio (SNR). By considering the values of these 

parameters, it becomes possible to account for all the error 

sources and their unique features of propagation through the 

digital processing block of the measurement chain. 

To combine the uncertainties associated with the five 

error sources in each acquired sample and to take into account 

the uncertainty propagation during digital signal processing, 

an "ad hoc" simulator was developed using LabView 

software. 

This simulator is placed between an input signal simulator 

and the software block that executes the measurement 

algorithm. The input signal simulator generates n samples as 

if they were obtained from an ideal measurement system. 

These samples are sent to the error simulation block and then 

to the measurement algorithm block. The simulation is 

performed m times using a FOR loop, generating m different 

measurement results as if they were obtained from m different 

realizations of the same measurement chain. 

The simulation of the errors represented by the selected 

parameters is carried out as follows: 

➢ offset errors - at each trial, a constant value is added 

to the n input samples. This value is randomly extracted from 

the offset range provided by the manufacturer's specifications 

and is consistent with a rectangular distribution. 

➢ gain errors - at each trial, the n input samples are 

multiplied by a constant value. This value is randomly 

extracted from the gain range provided by the manufacturer's 

specifications and is consistent with a rectangular distribution. 

➢ THD errors - the transfer function is distorted by 

harmonic components that range from the second to the tenth 

order. These components' amplitudes vary randomly with 

each iteration but always generate a total harmonic distortion 

(THD) value that matches the manufacturer's specifications. 

➢ TSD errors - to simulate spurious tones, two 

sinusoidal signals are added. The amplitude and phase shift of 
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these sinusoids vary randomly at each iteration but they 

always generate a TSD value that matches the manufacturer's 

specifications. 

➢ SNR errors – at each trial, Gaussian noise is added to 

the input signal to produce a THD value that matches that 

specified by the manufacturer. 

The m measurement results are collected outside the FOR 

loop. Then, the main value, the standard deviation, which 

represents the starting uncertainty, and the probability density 

function (PDF) are calculated. 

Fig. 1 shows a simplified flow diagram of the simulator.  
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Fig. 1. Flow diagram of the simulator 

3. Validation 

To validate the effectiveness of the proposed approach, it 

was applied to actual measurements and compared with the 

results obtained from experimental tests.  

Two models of DAQs were utilized in the tests, namely 

the National Instrument™ (NI) USB 9239 and the NI USB 

9225, both equipped with 24-bit sigma-delta converters. The 

performed measurement was the root mean square (RMS) 

value of a 60 Hz sine wave signal generated by the Fluke™ 

5720A multifunction calibrator, which can be used as a 

reference standard. The signal was acquired at a sampling rate 

of 2 kS/s, with 200 samples taken in each acquisition. For each 

test, 20 measurements were carried out on different days while 

maintaining the laboratory temperature in the range of 17-

23 °C.  To obtain the uncertainty values, the proposed 

approach was applied by carrying out 1000000 trials. The 

LabView language was used to drive the data acquisition 

boards and extract the RMS values from the acquired samples.  

 All the uncertainty values reported are expressed as 

expanded uncertainties with a 95 % confidence level.  

The first experiment was performed by acquiring a 5 V 

RMS sinusoidal signal by using the NI USB 9239 DAQ. 

Table 1 reports, for this board and this measurement, the 

values of the five parameters for the uncertainty evaluation. 

Table 1. Specifications for the NI USB 9239 DAQ 

Parameter Value 

offset  6 mV 

gain ± 0,13 % 

THD 99 dB 

TSD 128 dB 

SNR 100 dB 

 

Starting from these values and applying the proposed 

approach, an uncertainty of 6 mV was estimated. For this 

specific measurement, the Fluke 5720A, used in AV mode and 

within the range of 22 V, has an expanded uncertainty of 

230 V. 

Fig. 2 shows the 20 measured values; the dashed lines 

represent the uncertainty interval estimated by using the 

proposed approach and the continuous lines represent the 

uncertainty interval of the Fluke calibrator. 

 

Fig. 2. Voltage RMS values measured by using the NI USB 

9239 DAQ 

All the measured values fall within the calculated 

uncertainty range, thereby confirming the obtained 

uncertainty estimate. Although the actual standard deviation 

of the 20 measured values is significantly smaller than the 

estimated standard uncertainty, it is important to note that this 

apparent overestimation is because certain uncertainty sources 
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such as offset, gain, and INL cannot be fully highlighted in a 

test carried out with a single DAQ. 

In the second experiment, the NI USB 9225 DAQ was 

utilised to acquire a 200 V RMS sinusoidal signal. Table 2 

presents the values of the five parameters employed in the 

uncertainty evaluation for this board and measurement. 

Table 2. Specifications for the NI USB 9225 DAQ 

Parameter Value 

offset  22 mV 

gain ± 0,23 % 

THD 95 dB 

TSD 128 dB 

SNR 103 dB 

 

Starting from these values and applying the proposed 

approach, an uncertainty value of 300 mV was assessed. For 

this measurement, the expanded uncertainty of the Fluke 

5720A, used in AV mode and the range 220 V is 10 mV. Fig. 3 

displays the 20 measured values, along with the estimated 

uncertainty interval (dashed lines) and the calibrator 

uncertainty interval (continuous line). 

 

Fig. 3. Voltage RMS values measured by using the NI USB 

9225 DAQ 

Again, the 20 measures fall within the uncertainty range 

assessed by the Monte Carlo approach. 

To provide an example of a more complex measurement 

chain, the proposed approach was applied to the RMS value 

measurement of a 60 Hz 10 A RMS sinusoidal current, 

generated by the Fluke 5727A amplifier driven by the Fluke 

5720A calibrator. 

The signal was transduced through a current shunt PR 

electronics 7005 with the following characteristics: 0,1 

 nominal value; 1% tolerance; 20 W maximum power. The 

transduced signal was acquired by the NI USB 9239 DAQ 

whose characteristics are indicated above. 

Starting from these values and applying the proposed 

approach, an uncertainty value of 120 mA was estimated. For 

this measurement, the expanded uncertainty of the Fluke 

5720A plus the Fluke 5727A, used in AC mode and in the 

range 11 A is 10 mA. In Fig. 4, the 20 measured values, the 

estimated uncertainty interval, and the uncertainty interval of 

the current generation system are reported. 

 

Fig. 4. Current RMS values measured by using the 0,1  

shunt and the NI USB 9239 DAQ 

Once again, the measured values are within the estimated 

uncertainty range, giving further confirmation of the validity 

of the proposed approach. 

Manufacturers of transducers and DAQs do not always 

provide all the necessary parameters required to apply the 

proposed approach.  In these cases, where a statistically 

sufficient number of all measurement system components are 

available, a type A uncertainty evaluation can be performed. 

As an example, let us consider the low-cost 12-bit DAQ 

NI USB 6008. For this board, the manufacturer only provides 

absolute accuracy at full scale. However, by having ten DAQs 

of this model, it was possible to perform a statistical 

evaluation of the uncertainties associated with the proposed 

five parameters. 

For each DAQ, using a Fluke 8508A multimeter in DV 

mode as a reference, offset and gain were measured by 

drawing the transfer characteristics obtained via a five-point 

least minimum squares method. 

Acquiring a full-scale sinewave generated by the Fluke 

5720A calibrator in DV mode, THD, TSD and SNR values 

were measured for each DAQ using an FFT test. 

Table 3 shows the values obtained from tests for an input 

range of ± 10 V. 

Table 3. Specifications for the NI USB 9008 DAQ 

Parameter Value 

offset  1,8 mV 

gain ± 0,12 % 

THD 63 dB 

TSD 70 dB 

SNR 68 dB 

 

Using these values and applying the proposed approach, 

an uncertainty value of 6,4 mV was estimated. 

To verify the accuracy of the assessment of the five 

parameters, 60 measurements of the RMS value were 

conducted on different days. This was achieved by employing 

three randomly selected DAQs from the pool of ten available 

boards. A sinusoidal test signal with an RMS amplitude of 5 V 

was generated by the Fluke 5720A. 
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In Fig. 5, the estimated uncertainty interval, the calibrator 

uncertainty interval, and the 60 measurement results are 

reported (values 1-20 obtained by using the DAQ N.1; values 

21-40 obtained by using the DAQ N.2; values 41-60 obtained 

by using the DAQ N.3). 

 

Fig. 5.  Voltage RMS values measured by using three NI 

USB 9008 DAQ 

The measurement results, once again, comply with the 

estimated uncertainty range, thus certifying the validity of 

both the proposed approach and the estimate of the five 

parameters. 

By conducting a Type A evaluation, it is possible to 

consider electromagnetic disturbances, which have the 

potential to induce spurious tones, modify the offset value, 

and/or elevate the noise floor, as evidenced in [27]. 

Electromagnetic disturbances are caused by couplings 

with the measuring system's connection cables. Therefore, the 

actual values of offset, TSD and SNR should be assessed for 

the acquisition channel, including cables. This task can be 

easily achieved using the procedure described in [27]. 

For instance, another test was performed in proximity to 

a power drive system for a three-phase synchronous motor 

widely described in [28]. 

The test signal is a 200 V RMS sinusoid acquired by the 

NI USB 9225 DAQ. This power system produces a heavy 

inductive interference with the measurement system. 

Proceeding as indicated in [27], this interference was 

quantified. It causes both spurious tones and broadband noise, 

reducing the TSD value from 128 dB to 73 dB and the SNR 

value from 103 dB to 62 dB. 

Using the new TSD and SNR values and applying the 

proposed approach, an uncertainty value of 1,3 V was 

estimated. Again, the chosen measurement was the RMS 

value of a 200 V RMS sinusoidal signal generated by the 

Fluke calibrator. 

Performing 20 measurements near the power drive 

system, the values reported in Fig. 6 were obtained. These 

measurement results, again, lie within the estimated 

uncertainty range. 

 

Fig. 6. Voltage RMS values measured by using the NI USB 

9225 DAQ in proximity to a power drive system 

4. Proposed Method Application 

The Monte Carlo method allows obtaining, in addition to 

the standard deviations (which according to [21] represent the 

measurement uncertainties), also the mean values and the 

probability density functions (PDF). By analysing the PDF, it 

is possible to determine if measurement errors cause a bias in 

the measurement result and to identify potential asymmetries 

in the distributions. Thus, it is possible to estimate confidence 

intervals related to uncertainty with greater accuracy. 

The proposed method has another advantage, as it can 

easily estimate the impact of various sources of error on the 

measurement uncertainty. This final point enables the precise 

design of the measurement system and the right choice of 

transducers, A/D converters, and DAQ. 

To give an example, let us consider acquiring a voltage 

signal through a low-cost acquisition channel that includes a 

voltage probe and a data acquisition system (DAQ), with the 

characteristics listed in Table 4. 

Table 4. Typical specifications for a low-cost acquisition 

channel 

Parameter Value 

offset  1,2 mV 

gain ± 1,3 % 

THD 70 dB 

TSD 70 dB 

SNR 60 dB 

 

Let us consider the measure of the DC value, RMS value, 

FFT fundamental frequency amplitude, and harmonic 

distortion. The characteristics of the acquired voltage signal 

are listed in Table 5. 

Table 5. Components of the simulated voltage signal 

Peak value [V] 2 200 20 10 

Frequency [Hz] 0 50 150 250 
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For every one of the four measures mentioned above, the 

proposed approach was applied to this signal by running 

1000000 iterations. 

To get the total uncertainty associated with 

measurements, it is necessary to simulate the effects of all 

error sources simultaneously. 

To assess the impact of a specific source on the 

uncertainty, it is sufficient to apply the Monte Carlo method 

by simulating only its effect. 

Table 6 reports, for each measurement, the expected 

values, the estimated bias, and standard uncertainties obtained 

by considering all the error sources at once and by considering 

the error sources individually. 

Table 6. Expected values, estimated bias, and standard 

uncertainties 

Measure 

DC 

value 

[V] 

RMS 

value 

[V] 

FFT 

50 Hz 

[V] 

Harmonic 

distortion 

[%] 

Expected 

value 
2,000 142,310 141,421 11,180 

Bias 

All error 

sources 

0 0,013 0 0,030 

Uncertainty 

All error 

sources 

1,0 1,2 1,2 0,10 

Uncertainty 

Offset 

errors 

0,70 0,010 0 0 

Uncertainty 

Gain errors 
0,015 1,1 1,1 0 

Uncertainty 

THD error 
0  0,030 0,020 0,003 

Uncertainty 

TSD error 
0 0,50 0,40 0,008 

Uncertainty 

SNR error 
0,10 0,10 0,10 0,09 

 

From these values, it is possible to make various 

considerations. For example, the offset is virtually the only 

error that affects the measurement of the DC value. In contrast, 

offset and gain errors have no impact on the harmonic 

distortion measurement. 

Other useful information can be obtained by analysing the 

PDF generated by the Monte Carlo approach. For instance, 

Fig. 7 reports the estimated PDF generated by 1000000 trials 

of harmonic distortion measurements. 

 

Fig. 7. PDF of harmonic distortion measurement 

In this case, the distribution shape is Gaussian and, 

therefore, a 95 % confidence level can be correctly evaluated 

multiplying the standard uncertainty by a coverage factor 

k = 1,96. 

Fig. 8 reports the estimated PDF generated by 1000000 

trials of DC value measurements. 

 

Fig. 8. PDF of DC value measurement 

Here, due to the triangular shape of the distribution, it is 

not appropriate to use a Gaussian distribution to determine the 

correct confidence interval. The coverage factor for a 

triangular distribution is equivalent to 2,44 for a 95 % 

confidence level, so assuming a Gaussian distribution would 

result in a 20 % uncertainty underestimate. 

5. Conclusion 

In this paper, the problem of uncertainty estimation for 

measurements in smart grids is explored. A Monte Carlo 

approach was used to obtain the values of the combined 

expanded uncertainty of measurement results, considering the 

various error sources introduced during signal conditioning 

and A/D conversion, as prescribed in [21].  

Simulation analysis showed that the parameters of offset, 

gain, THD, TSD, and SNR take into account all the 

uncertainties that arise during the measurement process and 

their specific behaviour during digital signal processing. 

Based on the values of these parameters, it is possible to 

evaluate the uncertainty values. 

To demonstrate this assertion, the method was applied in 

real measurements and the results were compared to those 

obtained through experimental tests. The comparison showed 

that the suggested method leads to an accurate estimation of 

the uncertainties. 

8

0

2

4

6

THD % [V]

11,810,6 10,8 11 11,2 11,4 11,6

5

0

1

2

3

4

DC value [V]

5-1 -0,5 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5



INTERNATIONAL JOURNAL of SMART GRID  
C. Spataro, Vol.7, No.4, December, 2023 

 206 

Unfortunately, the five parameters suggested here are not 

always included in the specifications and often are defined and 

measured in different ways. In these cases, manufacturers 

should be consistent in declaring, defining, and measuring the 

parameters that qualify their products. This could only be 

achieved with the full harmonization of all standards dealing 

with the characteristics of transducers, A/D converters, and 

DAQs. 

An additional advantage of the proposed method is the 

ability to generate the actual probability density functions 

associated with the measurement, allowing for the calculation 

of accurate coverage levels and avoiding uncertainty 

underestimates in presence of not-Gaussian distributions. 

Moreover, the Monte Carlo approach can easily estimate 

the effect of various sources of error on the measurement 

uncertainty. This allows for the accurate design of the 

measurement system and the selection of appropriate 

transducers and A/D converters. 

Although the proposed simulator has been used for 

simulated signals, it can also be employed for acquired 

signals. Therefore, it can be implemented in the software part 

of the measurement system to estimate the uncertainty in real 

time taking into account the specificity of the acquired signal. 

In the future, the study intends to analyse the 

measurements taken with two acquisition channels, such as 

power and energy measurements. In these cases, phase errors 

generated by both transducers and multi-channel A/D 

converters need to be considered. 
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